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1. INTRODUCTION & MOTIVATION 
According to the Centers for Disease Control and Prevention, 
respiratory syncytial virus (RSV) results in an average 177,000 
hospitalizations and 14,000 deaths per year among adults older 
than 65 and influenza resulted in 64 pediatric deaths during the 
2012-2013 flu season. [5],[6] A reliable method for early 
detection for respiratory  infections like these could result in better 
health outcomes. 
The gene expression levels of a cell correspond to the abundance 
of mRNA produced during transcription of each gene. These 
levels change upon viral infection. Thus, difference in gene 
expression profiles may be a good early indicator of illness. 
However, using gene expression profiles for classification is very 
difficult because there are a large number of genes measured for 
any cell (10^4) and thus a huge range of possible gene profiles. 
While researchers have data on how these genes react to illness, 
they do not know which changes are meaningful. Thus the feature 
space is not well defined. There is also quite a bit of variability 
across individuals, which means any learning method needs to be 
robust to cross-subject variance. We propose and evaluate a k-
nearest neighbor classifier for this task across multiple k-values 
and distance measures. 

2. DATA 
Our training set consisted of gene expression profiles from 
peripheral blood mononuclear cells  (PBMCs) collected from 
patients with acute influenza infection, respiratory syncytial virus 
(RSV) infection, and neither influenza nor RSV infection to serve 
as a control group. This data was collected in [2]. The accession 
number of our dataset is GSE34205 
 
Each example consists of a classification, infected or uninfected, 
along with a vector of gene expression levels.  Each vector 
consists of 54,675 gene expression levels, which are real valued 
numbers. Samples were collected from 79 ill patients. A control 
group of uninfected cells were collected from 22 patients. In this 
data set, each patient is a data point. Thus we have a total of 101 
instances to base our model on.   
 

3. SYSTEM OVERVIEW 
Our system uses principal component analysis to reduce the 
dimensionality of the gene profiles. For a new unlabeled cell, the 
system compares its profile to the database of classified profiles 
using L1 norm, L2 norm, or cosine similarity. The most common 
label among the top k scoring exemplars is the output label. This 
is either infected or uninfected. 

 
Figure 1: System Work-Flow 

3.1 Feature Selection 
Since there are usually tens of thousands of genes probed per 
sample in gene expression data, the first step in our system is to 
reduce the dimensionality of the data set. We do this by applying 
principal component analysis to our dataset and the selecting the 
top 25 components. This explains 83% of the variance in our data. 
From there, we select as our relevant genes those genes whose 
coefficient is greater than 2 standard deviations from the mean. 
This results in 20,279 genes, a 63% reduction in dimensionality. 

4. EXPERIMENTS 
The goal of the experiment is to determine which distance 
measures and k-values best classify infected cells.  Using the 
above system: 
 
We varied both the k-values and distance measures for the 
classifier and evaluated each combination using 9-fold validation. 

• We have 101 examples. We performed 9-fold validation. 8 
folds had 11 samples and 1 had 13.  

• We tried k values: 1,3,5,7. 
• We tried distance measures: L1 Norm, L2 Norm, cosine 

similarity 
• For each test-fold, results were output as two cell arrays, one 

of predicted output and one of actual output. Each test fold 
also produced an accuracy score. 

We then repeated each of these trials using the same randomly 
selected set of PCA components to evaluate the effect of our PCA 
approach. Running without PCA turned out to be too resource 
intensive to be practical. 



Initial data analysis revealed that uninfected and infected cells 
were unevenly distributed throughout the data. This resulted in 
some folds containing the majority of uninfected cells, greatly 
limiting the number remaining in the training set. To resolve this, 
we randomized the order of the cells before creating the folds. The 
relative distributions of infected and uninfected cells across folds 
are shown below.  

 

 

 

 

 

 

 

 

 

 

 

5. RESULTS 
Our top performing method was a k-value of 1 and L1 norm at 
92.075% accuracy. These results are summarized in table 1 below. 

K value L1 Norm L2 Norm Cosine 
1 0.92075 0.9021 0.72028 
3 0.892 0.892 0.71018 
5 0.90909 0.90909 0.70008 
7 0.88889 0.90909 0.71018 

Table 1: Average Accuracy 
For each result we then computed the average F1 measure which 
is a weighted ratio between the rates of precision and recall. An F 
score of 1 is perfect. This data is summarized in table 2. 

 

K Value L1 Norm L2 Norm Cosine 
1 0.94452 0.93458 0.8301 
3 0.92718 0.92718 0.82596 
5 0.93974 0.93974 0.81953 
7 0.92933 0.94415 0.82512 

Table 2: Average F score 

The F1 measure for our top scoring method was 0.9445. This was 
an increase of 15.25% in F1 from the lowest performing set 
(cosine similarity, k = 5). Against a baseline that always chose 
infected (Fscore = 0.8779) our method provided a 7.5% increase. 

Furthermore, we evaluated our PCA strategy against a baseline 
that used random components. The top performing measure again 
was k = 1 with L1 norm. With an average F score of 0.944, there 
was no significant difference between the two methods. 
Interestingly, on average our PCA method actually decreased our 
performance when using cosine similarity. These results are 
shown in table 3. 

 
 
 

K Value Random PCA Top 25 PCA 
1 0.86609 0.8301 
3 0.8301 0.82596 
5 0.86609 0.81953 
7 0.83286 0.82512 

 Table 3: Average Cosine Scores Across PCA Methods 
Finally, there does not seem to be a consistent effect of k-value on 
performance. The average F1 measure data from table 1 has been 
plotted in figure 3 below. 

 
Figure 3: Average F score 

No line consistently increases or decreases with k value. It does 
appear at the end that the L2 measure begins to increase with 
greater k value, though this is not consistent with performance at k 
= 3. Ultimately, we limited our highest k-value to 7 because of the 
limited size of our data. 

6. CONCLUSION & FUTURE WORK 
K-nearest neighbor methods perform well on the disease 
classification task. Somewhat unexpectedly, simpler proved to be 
better as our best performance came from using the L1 Norm with 
a k-value of 1. Cosine similarity performed the worst across all k 
values. Additionally, while we found that dimensionality 
reduction was necessary in order to allow efficient processing, we 
do not necessarily conclude that our method of PCA is the best. In 
fact, for certain measures of distance it may be harmful. 
There are several possible reasons for these results. One 
possibility is that the signal to noise ratio needs to be further 
reduced. Further factor analysis may reveal a few specific genes 
that directly predict infection. 

There did not seem to be a clear effect of k value. This may have 
to do with the relatively small size of the data set and its skew 
towards infected cells. Furthermore, as k increases past 7 the 
system would be more susceptible to noise among the uninfected 
cells and could over predict infection. 

With a maximum accuracy of 92.075%, this classifier could be 
useful for medical applications and particularly useful as a part of 
a boosting approach, but is currently not high-enough to reliably 
diagnose patients. That said, our performance does suggest future 
research into this approach. 
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Figure 2: Proportion of Classes Across Folds 
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